The Cells of the Immune System

Bone marrow

- pluripotent hematopoietic stem cell

- common lymphoid progenitor
- common myeloid progenitor
- granulocyte/macrophage progenitor
- megakaryocyte/erythrocyte progenitor

Blood

- B cell
- T cell
- neutrophil
- eosinophil
- basophil
- unknown precursor
- monocyte
- immature dendritic cell
- platelets
- erythrocyte

Granulocytes (or polymorphonuclear leukocytes)

Effector cells

- plasma cell
- activated T cell

Tissues

- mast cell
- macrophage
- immature dendritic cell

Lymph nodes

- mature dendritic cell
The Immune Reaction

- T helper cell (Th2) → B cells → Antibodies
- T helper cell (Th1) → Macrophages
- APC
- Antigen
- CD4^+
Applications for Monitoring the Immune Functions

- Use BrdU, Annexin V, and other methods to examine proliferation and apoptosis.
- Use optimized buffers and antibodies to look at transcription factor expression by flow cytometry.
- Measure phosphorylation status of key proteins with BD Phosflow antibodies.
- Use flow cytometry to sort cells or examine expression of cell surface markers.
- Examine cytokines expressed from a particular cell type with intracellular flow cytometry.
- Measure one secreted cytokine with ELISA or ELISPOT.
- Measure the levels of several cytokines simultaneously with BD CBA.
Tools & Technologies for Immune Function Monitoring

<table>
<thead>
<tr>
<th>Tool/Technology</th>
<th>Flow Cytometry/Surface</th>
<th>Flow Cytometry/Intracellular</th>
<th>BD Cytometric Bead Array (CBA)</th>
<th>ELISPOT</th>
<th>ELISA</th>
<th>In Vivo Capture Assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecules detected</td>
<td>Surface</td>
<td>intracellular and surface</td>
<td>Secreted or intracellular</td>
<td>Secreted (in situ)</td>
<td>Secreted</td>
<td>Secreted (in vivo)</td>
</tr>
<tr>
<td>Multiparameter</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Single cell subset information</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Frequencies, no subset information</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Antigen specific</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Post-assay viability</td>
<td>Yes</td>
<td>No</td>
<td>Yes, for secreted molecules</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Quantitation of protein</td>
<td>Possible*</td>
<td>Possible*</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Instrumentation</td>
<td>Flow cytometer</td>
<td>Flow cytometer</td>
<td>Flow cytometer</td>
<td>ELISPOT reader</td>
<td>Spectrophotometer</td>
<td>Spectrophotometer</td>
</tr>
</tbody>
</table>
Applications for Monitoring the Immune Functions – Surface & Intracellular

- Use BrdU, Annexin V, and other methods to examine proliferation and apoptosis.
- Use optimized buffers and antibodies to look at transcription factor expression by flow cytometry.
- Use flow cytometry to sort cells or examine expression of cell surface markers.
- Examine cytokines expressed from a particular cell type with intracellular flow cytometry.
- Measure phosphorylation status of key proteins with BD Phosflow antibodies.
- Measure one secreted cytokine with ELISA or ELISPOT.
- Measure the levels of several cytokines simultaneously with BD CBA.
Principle of Cell Surface Staining

Block Fc Receptors & Cell Surface Staining

Analysis by Flow Cytometry
Principle of Intracellular Cytokine Staining (ICS) Procedure

1. Stimulation
2. Block Protein Secretion
3. Block Fc Receptors & Cell Surface Staining
4. Intracellular Staining
5. Fixation & Permeabilization
6. Analysis by Flow Cytometry

- Anti-INF-γ
- CD69

wash
1. Selected Stimulation Methods

A. TCR mediated (CD3/CD28)
B. Mitogenic (PHA/Con A)
C. Polyclonal (PMA/Ionomycin)
D. Lipopolysacharride (LPS)
E. Superantigen (SEB)
F. Antigen specific (Peptides)
1. Selected Stimulation Methods

Summary

<table>
<thead>
<tr>
<th>Method</th>
<th>Myeloid cell</th>
<th>B cell</th>
<th>T-helper cell</th>
<th>Cytotox T cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMA/Iono</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>PHA/ConA</td>
<td>-</td>
<td>-</td>
<td></td>
<td>Very strong</td>
</tr>
<tr>
<td>LPS</td>
<td>Yes/ better + IFNγ</td>
<td>Yes</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>CD3/CD28</td>
<td>-</td>
<td>-</td>
<td></td>
<td>Yes/ better + IL-2</td>
</tr>
<tr>
<td>IL-2</td>
<td>-</td>
<td>Yes</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Other cytokines</td>
<td>Normally weak/very individual -> not possible to make general assumptions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEB + CD28/CD49d</td>
<td>-</td>
<td>-</td>
<td></td>
<td>Very strong</td>
</tr>
</tbody>
</table>
1. Selected Stimulation Methods

Conclusion

Artificial activation

- Easy to perform
- In most cases strong cellular reaction in **ALL** susceptible cells
- **BUT**: No direct link to specific and natural processes
- Very good positive control **IN PARALLEL** to natural activations

Natural / specific activation

- Often quite difficult to perform perfectly well
- Often only weak signals
- Often only in very small **BUT** **VERY SPECIFIC** subpopulations
- **IN THE END** the only relevant system working with primary cells
2. Protein Transport Inhibitors

GolgiPlug (Brefeldin A) vs. GolgiStop (Monensin)

GolgiPlug™ inhibits secretion by disrupting the transport of cytokines from rough ER to Golgi complex.

GolgiStop™ inhibits secretion resulting in an accumulation of cytokines.
2. Protein Transport Inhibitors

• Cytokines are secreted fast upon expression

• Cytokine concentrations in cells are very low / not detectable

• Accumulation needed

• Substances are needed that delay cytokine secretion
 – Brefeldin A: BD GolgiPlug (cat# 555029): 1mg / ml in DMSO (1mM)
 – Monensin: BD GolgiStop (cat# 554724): 2mg / ml in EtOH (1mM)
Monensin (BD GolgiStop™) & Brefeldin A (BD GolgiPlug™) are commonly used to trap cytokines inside the cell for analysis.

- Monensin prevents protein secretion by interacting with the Golgi transmembrane Na\(^{++}\)/H\(^{+}\) transport.
- Brefeldin A redistributes intracellularly produced proteins from the cis/medial Golgi complex to the endoplasmic reticulum.
- Different inhibitors may work better for detection of different cytokines

<table>
<thead>
<tr>
<th>Species</th>
<th>Cytokines</th>
<th>Transport Inhibitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>IL-1(\alpha), IL-6, IL-8, TNF-(\alpha)</td>
<td>Monensin</td>
</tr>
<tr>
<td>Human</td>
<td>IFN-(\gamma), IL-2, IL-10, IL-12, MCP-1, MCP-3, MIG, MIP-1(\alpha), RANTES</td>
<td>Monensin or Brefeldin A</td>
</tr>
<tr>
<td>Mouse</td>
<td>IL-6, IL-12, TNF-(\alpha)</td>
<td>Brefeldin A</td>
</tr>
<tr>
<td>Mouse</td>
<td>GM-CSF, IL-3, IL-4, IL-5, IL-10</td>
<td>Monensin</td>
</tr>
<tr>
<td>Mouse</td>
<td>IFN-(\gamma), IL-2</td>
<td>Monensin or Brefeldin A</td>
</tr>
</tbody>
</table>
2. Protein Transport Inhibitors

Challenges

• Inhibition of intracellular protein transport by Monensin and Brefeldin A is toxic for cells

• Monensin and Brefeldin A do not only delay secretion of cytokines, but ALL protein secretion

• Maximum incubation time is 12-16hrs (protocol- and lab-dependent)

• Not all cytokines are expressed at high levels directly after activation

• Evaluate kinetics of cytokine expression for each activation method

• Perform activation and add Brefeldin A or Monensin only for the last 12hr
Effect of Protein Transport Inhibitors

No GolgiStop With GolgiStop

- IL-2 (PE)
- TNF-α (PE)
- IFN-γ (PE)
3. Blocking of Unspecific Staining

- **Mouse and Rat Systems**
 - BD FcBlock™ (anti-CD32/CD64)

- **Human Systems**
 - Excess of irrelevant purified Ig
 - Human serum
4. Cell Surface Antigen Staining

Diagram showing the process of staining cell-surface antigens.

- Unlabeled Cell Surface antigens
- Stained Cell-Surface Antigens
5. Cell Fixation and Permeabilization

Fix prior to permeabilization to maintain structural integrity

Fix = Paraformaldehyde
Permeabilize = Saponin
6. Controls for ICS

Purified Antibody
- Pretreatment of cells with purified antibody from the same hybridoma clone blocks the binding of the fluorescent antibody to the ligand.

Recombinant Cytokine
- Excess recombinant cytokine prevents binding of fluorescent anti-cytokine antibodies.

Isotype Control
- Non-specific binding of fluorescent Ig isotype controls.
6. Controls for ICS

- Demonstrates inherent “non-specific” background levels
- Negative staining control
- Subtract “non-specific” staining from positive cytokine staining, these are actual positives
6. Controls for ICS
Control Cells

• **Fixed cytokine positive cells**
 - Staining control
 - Workflow control
 - Antibody titration

• **Human**
 - HiCK-1, HiCK-2, HiCK-3, HiCK-4

• **Mouse**
 - MiCK-1 (IL-2, IFN-γ, TNF-α)
 - MiCK-2 (IL-3, IL-4, IL-10, GM-CSF)

Representative expression of IL-2 (A: PE-MIQ1-17H12, Cat. No.18955A), IFN-γ (B: PE-4S.B3, Cat. No. 18505A), and TNF-α, (C: PE-MAb11, Cat. No.18645A) and light-scattering characteristics, (D) by HiCK-1 Positive Control Cells.
Detection & Quantitation of Soluble Proteins, Transcription Factors & Phospho-Proteins

ELISA

Use BrdU, Annexin V, and other methods to examine proliferation and apoptosis.

Use optimized buffers and antibodies to look at transcription factor expression by flow cytometry.

Use flow cytometry to sort cells or examine expression of cell surface markers.

Measure phosphorylation status of key proteins with BD Phosflow antibodies.

Examine cytokines expressed from a particular cell type with intracellular flow cytometry.

Measure the levels of several cytokines simultaneously with BD CBA.

Measure one secreted cytokine with ELISA or ELISPOT.
Principle of an ELISA

ELISA: Enzyme Linked Immunosorbent Assay

1. Capture Antibody, Incubate overnight
2. Wash, Block Plates, Incubate 1 hr. RT
3. Wash, Add Standard/Sample, Incubate 2 hr. RT
4. Wash, Add Detection Antibody, Incubate 1 hr. RT
5. Wash, add Substrate Incubate 30 min. RT
6. Add Stop Solution Read at 450 nm
Principle of an ELISA
ELISA Technology Features

- Measures soluble proteins in supernatants and lysates
- Quantitative results
- Highly sensitive compared to single Ab applications
- Fast results
- No single cell analysis
Detection & Quantitation of Soluble Proteins, Transcription Factors & Phospho-Proteins

CBA

Use BrdU, Annexin V, and other methods to examine proliferation and apoptosis.

Use optimized buffers and antibodies to look at transcription factor expression by flow cytometry.

Measure phosphorylation status of key proteins with BD Phosflow antibodies.

Examine cytokines expressed from a particular cell type with intracellular flow cytometry.

Measure one secreted cytokine with ELISA or ELISPOT.

Measure the levels of several cytokines simultaneously with BD CBA.
CBA - Definition

- Fluorescent immuno-assay allowing the simultaneous detection and quantification of proteins within one sample using flow cytometry

- CBA:
 - Cytometric: Data acquired on a flow cytometer is analysed using specific software
 - Bead: The system is composed of various beads with different fluorescence intensity coated with high affinity capture antibodies
 - Array: Technology allowing multiplex analysis
The Cytometric Bead Array (CBA)

Beads provide an expandable assay platform for use with a flow cytometer

- Multiple sizes
- Different intensities
- Different colors with different intensities

CBA Kits
CBA Flex Sets
Enhanced Sensitivity Flex Sets
How does a CBA Assay work?

Capture Ab + Capture Bead

Analyte of Interest + Fluorescent Detector Ab
CBA Basics

1. Prepare samples
2. Acquire samples
3. Analyze samples
Principle of BD™ CBA Kits

One Step

3 h incubation
BD™ CBA Kits

Cytokine standard
Detection-antibodies
Assay Buffer
Capture-Beads
Wash buffer
Instrument calibration
BD™ CBA Kits

Human Portfolio

<table>
<thead>
<tr>
<th>Kit content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anaphylatoxin Kit C4a, C3a, C5a</td>
</tr>
<tr>
<td>Chemokine Kit IL-8, RANTES, MIG, MCP-1, IP-10</td>
</tr>
<tr>
<td>Inflammation Kit IL-8, IL-1b, IL-6, IL-10, TNF, IL-12p70</td>
</tr>
<tr>
<td>Th1/Th2 Cytokine Kit IL-2, IL-4, IL-5, IL-10, TNF, IFNg</td>
</tr>
<tr>
<td>Th1/Th2 Cytokine Kit II IL-2, IL-4, IL-6, IL-10, TNF, IFNg</td>
</tr>
</tbody>
</table>

Mouse Portfolio

<table>
<thead>
<tr>
<th>Kit content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunoglobulin Isotyping Kit IgG1, IgG2a, IgG2b, IgG3, IgA, IgM, IgE</td>
</tr>
<tr>
<td>Inflammation Kit IL-6, IL-10, MCP-1, IFNg, TNF, IL-12p70</td>
</tr>
<tr>
<td>Th1/Th2 Cytokine Kit IL-2, IL-4, IL-5, TNF, IFNg</td>
</tr>
</tbody>
</table>

Non-Human Primate

<table>
<thead>
<tr>
<th>Kit content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th1/Th2 Cytokine Kit IL-2, IL-4, IL-5, IL-6, TNF, IFNg</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Kit content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Inflammation Standard IL-8, IL-1b, IL-6, IL-10, TNF, IL-12p70</td>
</tr>
<tr>
<td>Human Th1/Th2 Cytokine Standard IL-2, IL-4, IL-5, IL-6, IL-10, TNF, IFNg</td>
</tr>
<tr>
<td>Mouse Inflammation Standard IL-6, IL-10, MCP-1, IFNg, TNF, IL-12p70</td>
</tr>
<tr>
<td>Mouse Th1/Th2 Cytokine Standard IL-2, IL-4, IL-5, TNF, IFNg</td>
</tr>
</tbody>
</table>
BD™ CBA Kits

- Preconfigured kits for consistent results with routine panels
- Available for functional areas of biology such as Th1, Th2, Th17, inflammatory cytokines, anaphylatoxins
- Measure up to seven analytes simultaneously
- Compatible with flow cytometers that have a 488nm laser
Principle of BD CBA Flex Sets

CBA Soluble Protein Flex Set

- Beads in bead diluent w/o colors
- Beads + Sample/standard with assay diluent yellow
- Total 2-3 hours

CBA Cell Signaling Flex Set (cell lysate)

- Beads + Sample/standard with detector diluent = green
- Beads + Sample/standard with assay diluent yellow
- Total 4 hours

1 hour + 1 or 2 hours
CBA Kits vs. CBA Flex Sets

<table>
<thead>
<tr>
<th></th>
<th>CBA</th>
<th>CBA Flex</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of beads</td>
<td>6-7</td>
<td>30</td>
</tr>
<tr>
<td>Bead fluorescence</td>
<td>FL-3 (670nm) or FL-4 (660nm)</td>
<td>FL-3 (670 or 785)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FL-4 (660)</td>
</tr>
<tr>
<td>Detection method</td>
<td>PE</td>
<td>PE</td>
</tr>
<tr>
<td>Sample</td>
<td>In solution</td>
<td>In solution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cell lysate ; Cell Signaling</td>
</tr>
<tr>
<td>Flow cytometer</td>
<td>1 laser 488nm</td>
<td>2 lasers : 488 & 635</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or 532 & 635</td>
</tr>
<tr>
<td>Software</td>
<td>FCAP</td>
<td>FCAP</td>
</tr>
</tbody>
</table>
CBA Flex Sets: Bead Identification

30 bead positions available

<table>
<thead>
<tr>
<th>Cluster ID</th>
<th>Cluster ID</th>
<th>Bead</th>
<th>Bead</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hu IL-1bet</td>
<td>BD-dA4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Hu IL-2</td>
<td>BD-dA5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Hu IL-4</td>
<td>BD-dA7</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Hu IL-5</td>
<td>BD-dA8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Hu IL-6</td>
<td>BD-dA9</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Hu IL-7</td>
<td>BD-dB4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Hu IL-8</td>
<td>BD-dB5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Hu IL-10</td>
<td>BD-dB7</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Hu IL-12</td>
<td>BD-dB8</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>bFGF</td>
<td>BD-dC5</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>FAS-L</td>
<td>BD-dC6</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>G-CSF</td>
<td>BD-dC8</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>GM-CSF</td>
<td>BD-dC9</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>TNF</td>
<td>BD-dD4</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>IP10</td>
<td>BD-dD5</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>LT-alpha</td>
<td>BD-dD7</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>MCP-1</td>
<td>BD-dD8</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>MIF</td>
<td>BD-dD9</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>MIF-Talpha</td>
<td>BD-dE4</td>
<td></td>
</tr>
</tbody>
</table>
100 tests, packed as “set”

- Capture beads
- Detector reagents
- Standard (x2)
- Contains a simple TDS with performance info
BD™ CBA Flex Master Buffer Kit

100 and 500 test sizes

• includes all buffers and setup reagents
 • Mouse/Rat
 • Human
 • Cell Signaling
• Contains a Manual with setup instructions and assay protocol details
<table>
<thead>
<tr>
<th>CBA Kits</th>
<th>CBA Flex Sets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Signaling Flex Sets</td>
</tr>
<tr>
<td>contained in the kit</td>
<td>Cell Signaling Master Buffer Kit (for 500 or 100 tests)</td>
</tr>
<tr>
<td></td>
<td>Mouse/Rat Soluble Protein Master Buffer Kit (for 500 or 100 tests)</td>
</tr>
</tbody>
</table>

The different types of flex sets cannot be mixed and performed in the same sample.
BD™ CBA Flex Portfolio

- Soluble Proteins – Human (e.g. G-CSF, GM-CSF, IFNγ, IL-1β, IL-2, IL-3,...)
- Soluble Proteins – Immunoglobulins (e.g. Total IgG, IgG1, IgG2,...)
- Phospho-specific CBA Flex Sets (e.g. Akt1, Akt2, Akt3, ERK1/2,...)
- Soluble Proteins – Mouse (e.g. IFNγ, IL-1α, IL-2, IL-3, IL-4, IL-5,...)
- Soluble Proteins – Rat (e.g. IFNγ, IL-4, IL-6, IL-10, TNF)
- Soluble Proteins – Supporting Reagents (e.g. Hu / Ms Master Buffer Kit,...)
- Soluble Proteins – Standards (e.g. IFNγ, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8,...)
- Functional Beads (positions A4 – E9, own specificities)
- Functional Beads – Supporting Reagents (buffer, IgG detector ab)
ES Flex Sets vs. Classical Flex Sets

Classic Soluble CBA Flex
- Capture 1 hour
- Detection 1 or 2 hours
- Total 2-3 hours

Enhanced Sensitivity CBA Flex
- Capture 2 hours
- Detection 3 hours
- Total 5 hours
BD CBA Enhanced Sensitivity Flex Sets

- **A new family of Flex Sets**
 - Assay range:

<table>
<thead>
<tr>
<th>Classic CBA Flex Set</th>
<th>Enhanced Sensitivity Flex Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 - 2500 pg/ml</td>
<td>0.274 – 200 pg/ml</td>
</tr>
</tbody>
</table>

- **Allows cytokine detection in highly diluted samples**
- **Based on established CBA antibody pairs**
- **Tested in supernatant, serum, and plasma samples**
 - Main advantage in supernatant samples: can detect at earlier time points - that were previously below the level of detection
 - “Normal” serum and plasma samples still have undetectable amounts of analyte
BD CBA Enhanced Sensitivity Flex Sets

- **Flex Set (100 Tests)**
 - One vial of capture beads
 - One vial of detection reagent (Part A)
 - Two vials of standard

- **Master Buffer Kit (100 test and 500 test)**
 - Contains all buffers and set-up reagents
 - No Bead Diluent for Serum/Plasma
 - Contains more wash buffer
 - Contains the Enhanced Sensitivity Detection Reagent (Part B)
ES Flex Sets Can Detect Analytes Earlier in a Time Course

Human PBMC stimulated with PMA/Ionomycin

Note: No data reported when falling below the last standard curve point

Legend:
- Red: Flex Set
- Blue: ES Flex Set
<table>
<thead>
<tr>
<th>Feature</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assay range of 274 – 200,000 fg/mL</td>
<td>Can detect early points in a time course and highly diluted samples</td>
</tr>
<tr>
<td></td>
<td>35 fold sensitivity improvement as compared to classic CBA</td>
</tr>
<tr>
<td>Each ES CBA flex set has a different bead position</td>
<td>A fully flexible and cost-effective multiplex panel as compared to kits that may include inappropriate cytokines</td>
</tr>
<tr>
<td></td>
<td>Analyzes up to 10 soluble proteins with just 25 to 50 μL of sample</td>
</tr>
<tr>
<td>Based on existing Flex Set technology</td>
<td>Fast and easy implementation</td>
</tr>
</tbody>
</table>
Acquisition of Samples

The BD Accuri C6 Flow Cytometer System

An affordable, full-featured, easy-to-use flow cytometer.
Two lasers and six detectors
Analysis of Data

• FCAP Array v3.0 Analysis Software
 – Compatible with FCS 2.0 or 3.0 files from any flow cytometer
 – Integrated workflow for the BD FACSVerse flow cytometer
 – Windows® 7, Vista®, or XP compatible
Accuri C6 & CBA Summary

- A perfect and complete solution to measure & quantify multiple proteins simultaneously
 - CBA Flex Sets & Kits
 - Broad spectrum of specificities, ready-to-use or full flexibility

- BD Accuri C6 with C6Sampler option
 - Can be also used for other flow cytometric analysis
 - Specific templates available for acquisition & analysis of CBA Kits and Flex Sets

- FCAP Array software

- Application and technical support
Feature of CBA Products

• Up to 30 proteins detectable in parallel
 - Pre-configured kits or individual sets to mix and match your demands

• Sensitivity limit as low as 0.274 pg/mL

• Only 25 to 50 µL of sample needed
 - Multiple quantitative results from a single small-volume sample

• Significantly reduced time to results
 - High-performance optimized reagents for shortest time-to-results
 - No assay formulation required, regardless of plex size
 - Automated sample acquisition and increased throughput options with 96-well plate analysis

• A complete solution
 - Broad instrument compatibility and dedicated analysis software

BD
Applications for Monitoring the Immune Functions

- Use BrdU, Annexin V, and other methods to examine proliferation and apoptosis.
- Use optimized buffers and antibodies to look at transcription factor expression by flow cytometry.
- Use flow cytometry to sort cells or examine expression of cell surface markers.
- Measure phosphorylation status of key proteins with BD Phosflow antibodies.
- Examine cytokines expressed from a particular cell type with intracellular flow cytometry.
- Measure one secreted cytokine with ELISA or ELISPOT.
- Measure the levels of several cytokines simultaneously with BD CBA.