Immune processes underlying ALA formation and regeneration

Stefan Hoenow, Marie Groneberg, Claudia Marggraff

 Human amebiasis results from intestinal infections with the protozoan parasite Entamoeba histolytica (E. histolytica). The two major clinical symptoms that derive from the infections, the amebic colitis and the amebic liver abscess (ALA), represent major health problems in subtropical and tropical areas as well as in travellers. The parasite usually asymptomatically colonizes the bowel system, but occasionally it invades the mucosa and spreads via the blood stream into other organs, mainly in the liver. To investigate immunological backgrounds for the development of ALA, we have established a mouse model that resembles the human disease in terms of a comparable pathology and a similar sex distribution. Using selective depletion strategies and various knockout mutant mice, we were able to show that innate immune cells like the inflammatory Ly6Chi monocytes, but also liver resident Kupffer cells substantially contribute to the liver destruction via production of TNFα. IL-23 further contributes to immunopathology of ALA by stabilizing IL-17 production and CCL2 expression. On the other hand, tissue repair is initiated by the presence of anti-inflammatory Ly6Clo monocytes in the liver that produce IL-13 and further develop into alternative activated M2 macrophages expressing Arginase 1.


SFB841, " Leberentzündung: Infektion, Immunregulation und Konsequenzen" Project A2


Grafik über immunologische Auswirkungen beim Eindringen von Entamoeba histolytica in Leberzellen

Sex dimorphisms in the immune system

Julie Sellau, Marie Groneberg, Svenja Kühl

 An increasing body of evidence suggests an involvement of sex-based influences on the outcome of infectious, autoimmune and tumor diseases. This could be either attributed to X- or Y-chromosome linked-genes, environmental risk factors or sex hormones that act on immune responses involved in the outcome of a disease. Amebic liver abscess, a major severe symptom arising from human infections with the protozoan parasite Entamoeba  (E.)  histolytica, occurs independent from the infection rate with a clear sex bias towards adult men. With the aid of a mouse model that reflects the same sex dimorphism as observed in human, we found that testosterone significantly influenced the outcome of the disease. Female mice treated with testosterone lost their ability to control the abscess development and the parasite burden in the liver and Natural killer T cells, which were crucial for the control of the disease, produced less amounts of the protective cytokine IFNγ. In contrast, abscess development in male individuals was enabled by an immunopathology mediated by a C-C chemokine ligand  (CCL) 2-dependent recruitment of inflammatory monocytes and the production of TNFα and Nitric Oxide. Interestingly, we found higher CCL2 serum levels in the serum of men and male mice infected with the parasite compared to female individuals. In a larger consortium consisting of groups from the UKE, the Heinrich Pette Institute and the BNITM and funded by the BWFG we now want to identify common immune mechanisms that might underlie the sex-dependent outcome in a variety of diseases.


Forschergruppe 5068; "Sexdifference in Immunity" (Deutsche Forschungsgemeinschaft)

zu sehen ist eine Grafik immunologischer Mechanismen während der Entstehung eines Amöbenleberabszesses.
Immunologische Mechanismen während der Entstehung eines Amöbenleberabszesses

Beating parasites with their own weapons

Helena Fehling

Intracellular microorganisms that target immune cells can circumvent their clearance by manipulating the innate and the acquired immune response of the host. Two major human pathogens, parasites of the genus Leishmania and bacteria of the genus Mycobacterium, enter professional phagocytes like macrophages and dendritic cells (DC) where they survive and multiply. Through induction of immune evasion mechanisms the pathogen alter immune cell function and dampen protective immune responses. Therefore, immune ­stimulatory molecules that activate or re-activate target cells represent promising therapeutic tools for the treatment of these diseases. We recently isolated such an immunostimulatory molecule from the membrane of Entamoeba (E.) histolytica, a lipopeptidephosphoglycan (EhLPPG). The native molecule exhibited considerable immune cell stimulation leading to the reduction of the intracellular load of leishmania parasites in vitro and in a mouse model for the disease. In cooperation with Prof. Yukari Fujimoto from the Keio University in Japan and Prof. Chris Meier from the University of Hamburg we developed a series of synthetic analogs deduced from the two Phosphatidylinositol anchors of EhLPPG. So far, several analogs reproduced the anti-leishmanial activity of the parent compound in vitro and in vivo, presumably by inducing production of pro-inflammatory cytokines, and exhibited bactericidal activity against Mtbin vitro (Patent BNI002).


mikroskopische Fluoreszenzaufnahme von humanen Makrophagen, die mit Leishmanien infiziert sind.
Fluoreszenzaufnahme humaner Makrophagen, infiziert mit Leishmanien
mikroskopische Aufnahme am Opera Phenix
Research Group Leader

Prof. Dr. Hanna Lotter

Telefon: +49 40 285380-475


  • Logo Joachim Herz Stiftung
  • Logo DFG
  • Logo LCI
  • Logo sfb841